Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Diagn Microbiol Infect Dis, v. 94, n. 4, p. 403-406, aug. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2814

RESUMO

Most known plasmids are identified by conferring virulence or antimicrobial resistance phenotypes and such characteristics aid in the success of the dispersion of different plasmid types between bacteria from different sources. This study aimed to perform the subtyping of the plasmid-mediated quinolone resistance, detected in Salmonella spp. A total of 34 Salmonella strains non-susceptible to ciprofloxacin were evaluated. Strains were selected based on the presence of PMQR determined by Polymerase Chain Reaction and further submitted to Next Generation Sequencing. Most of the strains presented the qnrB19 in small ColE-like plasmids and qnrB2 gene associated with IncN/ST5 plasmids also detected. Our results indicated the co-occurrence of PMQR and ESBLs in plasmids that are a lineage of epidemic plasmids circulating in Salmonella in which additional resistances were detected, highlighting the potential threat of resistance Salmonella to public health, particularly in infections in which antimicrobial therapy is needed.

3.
Diagn. Microbiol. Infect. Dis. ; 94(4): 403-406, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17144

RESUMO

Most known plasmids are identified by conferring virulence or antimicrobial resistance phenotypes and such characteristics aid in the success of the dispersion of different plasmid types between bacteria from different sources. This study aimed to perform the subtyping of the plasmid-mediated quinolone resistance, detected in Salmonella spp. A total of 34 Salmonella strains non-susceptible to ciprofloxacin were evaluated. Strains were selected based on the presence of PMQR determined by Polymerase Chain Reaction and further submitted to Next Generation Sequencing. Most of the strains presented the qnrB19 in small ColE-like plasmids and qnrB2 gene associated with IncN/ST5 plasmids also detected. Our results indicated the co-occurrence of PMQR and ESBLs in plasmids that are a lineage of epidemic plasmids circulating in Salmonella in which additional resistances were detected, highlighting the potential threat of resistance Salmonella to public health, particularly in infections in which antimicrobial therapy is needed.

4.
Braz. j. microbiol ; 42(4): 1409-1419, Oct.-Dec. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-614603

RESUMO

Salmonella enterica serovar Typhimurium synthesizes cobalamin (vitamin B12) only during anaerobiosis. Two percent of the S. Typhimurium genome is devoted to the synthesis and uptake of vitamin B12 and to B12-dependent reactions. To understand the requirement for cobalamin synthesis better, we constructed mutants of Salmonella serovars Enteritidis and Pullorum that are double-defective in cobalamin biosynthesis (ÃcobSÃcbiA). We compared the virulence of these mutants to that of their respective wild type strains and found no impairment in their ability to cause disease in chickens. We then assessed B12 production in these mutants and their respective wild type strains, as well as in S. Typhimurium ÃcobSÃcbiA, Salmonella Gallinarum ÃcobSÃcbiA, and their respective wild type strains. None of the mutants was able to produce detectable B12. B12 was detectable in S. Enteritidis, S. Pullorum and S. Typhimurium wild type strains but not in S. Gallinarum. In conclusion, the production of vitamin B12 in vitro differed across the tested Salmonella serotypes and the deletion of the cbiA and cobS genes resulted in different levels of alteration in the host parasite interaction according to Salmonella serotype tested.


Assuntos
Animais , Salmonelose Animal , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/patogenicidade , /análise , /biossíntese , Galinhas , Virulência
5.
Braz. j. microbiol ; 40(3): 495-504, Sept. 2009.
Artigo em Inglês | LILACS | ID: lil-522471

RESUMO

Salmonella enterica serovar Gallinarum (SG) is a fowl typhoid agent in chickens and is a severe disease with worldwide economic impact as its mortality may reach up to 80 percent. It is one of a small group of serovars that typically produces typhoid-like infections in a narrow range of host species and which therefore represents a good model for human typhoid. The survival mechanisms are not considered to be virulent mechanisms but are essential for the life of the bacterium. Mutants of Salmonella Gallinarum containing defective genes, related to cobalamin biosynthesis and which Salmonella spp. has to be produced to survive when it is in an anaerobic environment, were produced in this study. Salmonella Gallinarum is an intracellular parasite. Therefore, this study could provide information about whether vitamin B12 biosynthesis might be essential to its survival in the host. The results showed that the singular deletion in cbiA or cobS genes did not interfere in the life of Salmonella Gallinarum in the host, perhaps because single deletion is not enough to impede vitamin B12 biosynthesis. It was noticed that diluted SG mutants with single deletion produced higher mortality than the wild strain of SG. When double mutation was carried out, the Salmonella Gallinarum mutant was unable to provoke mortality in susceptible chickens. This work showed that B12 biosynthesis is a very important step in the metabolism of Salmonella Gallinarum during the infection of the chickens. Further research on bacterium physiology should be carried out to elucidate the events described in this research and to assess the mutant as a vaccine strain.


Salmonella enterica serovar Gallinarum (SG) é o agente do tifo aviário, doença severa que provoca mortalidade em até 80 por cento do plantel de aves. SG encontra-se entre os poucos sorotipos de Salmonella que são agentes etiológicos de enfermidade específica, à semelhança de Salmonella Typhi em seres humanos podendo, portanto, servir de modelo experimental para outras salmoneloses hospedeiro especíifcas. Além dos mecanismos de virulência, a bactéria utiliza mecanismos de sobrevivência para permanecer no hospedeiro. A ativação desses mecanismos pode ou não estar associada à ativação dos mecanismos de virulência. Entre os mecanismos fisiológicos, está a produção de vitamina B12 que Salmonella spp. realiza em ambientes anaeróbicos, como quando encontra-se intracelularmente no organismo hospedeiro. Neste estudo, analisou-se a infecção de aves por cepas de SG, que tiveram genes alterados que participam da biossíntese de vitamina B12. Foram produzidos mutantes de SG contendo os genes cbiA e cobS alterados e um terceiro, contendo ambos os genes alterados. A sobrevivência e a ação patogênica de SG não foi modificada pela alteração simples de um dos genes, mas tornou a cepa de SG completamente atenuada quando os dois foram modificados. A mortalidade provocada pela cepa selvagem de SG foi de 64,52 por cento, enquanto que não observou-se mortalidade alguma no grupo de aves infectadas com SGNal r"cobs"cbiA. Estudos futuros deverão ser realizados para elucidar este processo fisiológico bacteriano e para avaliar a utilização desta cepa de SG como cepa vacinal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...